A Hybrid TOA-Fingerprinting Based Localization of Mobile Nodes Using UWB Signaling for Non Line-Of-Sight Conditions

نویسندگان

  • Md. Humayun Kabir
  • Ryuji Kohno
چکیده

Recently, Impulse Radio Ultra Wideband (IR-UWB) signaling has become popular for providing precise location accuracy for mobile and wireless sensor node localization in the indoor environment due to its large bandwidth and high time resolution while providing ultra-high transmission capacity. However, the Non-line-of-sight (NLOS) error mitigation has considerable importance in localization of wireless nodes. In order to mitigate NLOS errors in indoor localization this paper proposes and investigates a novel approach which creates a hybrid combination of channel impulse response (CIR)-based fingerprinting (FP) positioning and an iterative Time of Arrival (TOA) real time positioning method using Ultra Wideband (UWB) signaling. Besides, to reduce the calculation complexities in FP method, this paper also introduces a unique idea for the arrangement of reference nodes (or tags) to create a fingerprinting database. The simulation results confirm that the proposed hybrid method yields better positioning accuracies and is much more robust in NLOS error mitigation than TOA only and FP only and a conventional iterative positioning method.

برای دانلود رایگان متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

مکان یابی وفقی موبایل به روش آزمون باقی‌مانده

Determination of mobile localization with time of arrival (TOA) signal is a requirement in cellular mobile communication. In some of the previous methods, localization with non-line-of-sight (NLOS) paths can lead to large position error. Also for simplicity, in most simulations suppose non stationary actual environments as stationary. This paper proposes (residual test + recursive least square)...

متن کامل

Hybrid Real-Time and Preset Processing for Indoor Radio Geo-Location in Dense Multipath Environments

The existence of various geo-location applications and their accuracy requirements enhance the necessities for suitable processing techniques to solve the indoor geo-location problems. Since, Impulse Radio Ultra-Wideband (IR-UWB) signals have very short duration pulses; they can provide very accurate ranging and geo-location capability in short range indoor radio propagation environments. Our r...

متن کامل

Performance Analysis of ToA-Based Positioning Algorithms for Static and Dynamic Targets with Low Ranging Measurements

Indoor Positioning Systems (IPSs) for emergency responders is a challenging field attracting researchers worldwide. When compared with traditional indoor positioning solutions, the IPSs for emergency responders stand out as they have to operate in harsh and unstructured environments. From the various technologies available for the localization process, ultra-wide band (UWB) is a promising techn...

متن کامل

A Novel Ultra-Wideband Hybrid Localization Scheme in Coal Mine

—This paper addresses the problem of the roadway environment and Non-Line of Sight (NLOS) propagation on localization accuracy in coal mine. Unlike prior localization algorithms, reference nodes are deployed according to the actual environment in coal mine, and Time-of-Arrival (TOA) and Receive Signal Strength (RSS) measurements using UltraWideband (UWB) signals are combined to obtain better l...

متن کامل

Indoor Wireless Localization-hybrid and Unconstrained Nonlinear Optimization Approach

In this study, a hybrid TOA/RSSI wireless localization is proposed for accurate positioning in indoor UWB systems. The major problem in indoor localization is the effect of Non-Line of Sight (NLOS) propagation. To mitigate the NLOS effects, an unconstrained nonlinear optimization approach is utilized to process Time-of-Arrival (TOA) and Received Signal Strength (RSS) in the location system.TOA ...

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

عنوان ژورنال:

دوره 12  شماره 

صفحات  -

تاریخ انتشار 2012